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Abstract

Volume graphics in realtime applications had seen some development in the 1990’s before being largely
superceded by rasterized polygons due to memory limitations. Today, commodity graphics hardware provides
large, fast memory buffers and a highly parallel model for computation. This paper presents a demonstration
of volume modeling functions and a realtime rendering method which traces rays through RGBA volume
data for each pixel. Also presented is a realtime lighting model which allows for volumetric lighting effects,
by considering how light rays traverse this volume.

I. Introduction

Voxels, or volume elements, are a discrete
means to represent volume data. Here,
they are regular cubes, arranged orthog-

onally, and can be thought of as a 3D raster.
A single value, or set of values, exists and is
stored for each volume element. This value
can be associated with any point in the space
defined by the voxel’s extents. This concept
has seen applications in physical simulation as
well as computer graphics.

This project explores applications for this
representation in the domain of realtime graph-
ics. In the 1990s, there was contention on best
practices for realtime hardware. As the mar-
ket settled, polygonal representations would
become the de facto standard for producing re-
altime 3D graphics. The math governing their
use is well understood. Transforms exist which
allow arbitrary rotation, scaling, shearing, flip-

*https://jbaker.graphics/ for more information.

ping, and many other types of operations to be
performed on models defined as a set of trian-
gles. Due to the simplicity of this shape – three
vertices – there is an unambiguous definition
of geometry: these three points define a plane,
as long as they are noncollinear.

Competing rendering technologies existed,
though many have largely fallen out of use.
Voxels are one example of this. It is common
today to see polygonal representations of vox-
els, but until very recently, it was not common
to see them used directly as a realtime render-
ing method [4]. The following is a list of games
which have made use of this representation
for realtime rendering purposes. This list is
not complete, but it represents a diverse set of
approaches to getting an image to the screen.

• Commanche (Novalogic, 1992)
• Blade Runner (Westwood, 1997)
• Shadow Warrior (3DRealms, 1997)
• Blood (Monolith, 1997)
• Hexplore (Heliovision, 1998)
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• Outcast (Appeal, 1999)
• RollerCoaster Tycoon (Chris Sawyer, 1999)
• Command and Conquer: Tiberian Sun

(Westwood, 1999)
• Dwarf Fortress (Bay 12, 2006)

More recently, with approaches like march-
ing cubes [1]1 and dual contouring [5] being
applied to realtime applications, there exist rel-
atively general methods to convert from a vol-
ume representation to a polygonal surface rep-
resentation. This project centers around poten-
tial benefits of the direct volume representation,
and why it might be considered as an alterna-
tive.

II. Methods

i. Representation

The project almost entirely eschews the use
of OpenGL geometry, in order to avoid prob-
lems with the order dependence in alpha blend-
ing2. Two triangles are used to cover the
screen, in order to get a fragment and a cor-
responding shader invocation for every pixel
on the screen [7]. The voxel data itself is kept
using OpenGL’s 4.2 Image Load/Store func-
tionality [9]. This provides a GLSL interface
called images, which allow for read/write ac-
cess where texture samplers provide read-only
access. Three sets of image3D objects are used:
color, mask, and lighting, the use of which are
detailed in the following sections. Color holds
four-channel RGBA values, while mask and
lighting are single-channel images with only
one value per voxel. The use of this type of
buffer has allowed almost all computation to
be moved to the GPU.

ii. Rendering

Logically, the rendering process is done per-
pixel in a fragment shader. The reality is a little

1Originally developed for visualization of medical data
like CAT, MRI and PET scans.

2For more information on past approaches, includ-
ing methods for overcoming alpha blending limitations
in OpenGL geometry [6] see https://jbaker.graphics/

writings/voraldo_history.html

more complicated, in order to implement a
two-fold optimization that makes the program
much more efficient. A framebuffer image is
used to hold the result and present it to the
user.

First, this process decouples the display reso-
lution from the screen resolution, using a scale
factor defined at compile time. A value greater
than one will allow for supersampling, while
a value less than one can be used for environ-
ments with limited performance, such as an
integrated GPU in a laptop. The display treats
the framebuffer image as a texture, using multi-
sampling and linear texture filtering to see the
benefit from this scale factor.

The second part of this optimization comes
from the fact that unless the content, orienta-
tion, or scaling of the voxel block changes, there
is no need to produce a new image. There is a
redisplay flag set by the functions which per-
form these operations. When a framebuffer
update is called for, a tile-based renderer in a
compute shader is invoked. The use of tiles
keeps the operation flexible enough to deal
with varying framebuffer image sizes, and any
portion of a tile that falls outside of the image’s
extents is ignored. The result is then sampled
in order to produce the image output.

The renderer itself is based on compositing
samples through the volume to derive final
pixel color. This process starts by computing
a ray origin and ray direction for each pixel.
Starting with a set of basis vectors, two user-
controlled rotations are applied to represent a
pair of euler angles. By stepping back from the
origin along the rotated Z vector, you arrive at
a point at the center of the image. The X and
Y vectors are used to compute each individual
pixel’s offset from this point. Adding this offset
to the point at the center of the image, the ray
origin is known. For orthographic rendering,
the ray direction is simply the rotated Z vector.

The next step considers a parametric form
of this ray, and uses it to test against an AABB
which represents the extents of the voxel block.
If the ray misses, this shader invocation has no
more work to do. If the ray hits, near and far
intersection points are established in the form
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of two floating point numbers, tnear and tfar.
By sampling through the volume from the

farthest intersection point to the nearest inter-
section point, simple ‘over’ style alpha blend-
ing can be performed [12]. Using the raw alpha
channel proved to be limiting3 as very little of
the range was usable. To counter this limitation,
the value held in the alpha channel is raised to
a user-adjustable power to get the number that
will be used in the computation.

In this computation, two buffers are refer-
enced – one containing the current color and
opacity, and one containing the current light-
ing data. The value in the lighting buffer is
used to scale the intensity of the R, G and B
color channels’ contributions to the blending
operation. The pixel color, C, is initialized with
the OpenGL clear color, and is updated using a
color sample, T, and a light sample, L, accord-
ing to the following recurrence relation:

Cn+1.rgb = (T.rgb · 4.0 · L) · T.aαpower

+ Cn.rgb · Cn.a · (1 − T.aαpower)

Cn+1.a = T.aαpower + Cn.a · (1 − T.aαpower)

A series of samples is composited between
the intersection points, based on some given
step size and a maximum number of allowed
steps. The final value of C.rgb is stored in the
framebuffer image.

The factor of four was determined experi-
mentally to give a usable range, with enough
headroom to create highlights. A value of zero
will zero out the color contribution of the voxel
under consideration. A value of 0.25 will cancel
the scale factor to represent a neutral level of
lighting. Higher lighting values will begin to
saturate the color at values of 1.0 for all three
channels, making the contribution go to white4.
The use of this separate lighting buffer is to
decouple the logic governing the display from

3GLSL normalizes these 8-bit values, and that assump-
tion is carried through the equations in this paper – when
referencing a texture, the value returned is the value stored
in memory, divided by 256. The alpha power is applied to
this floating point number, in the range 0.0–1.0.

4Note that if there are small values or zeroes in the R, G
or B channels, it will not go to white, but it will eventually
move towards saturation of the nonzero channels.

the logic governing the computation of the vol-
umetric lighting.

iii. Modeling

There are a number of moving parts to the
modeling operation in order to provide smooth
interaction to the user and handle GPU syn-
cronization. There are two sets of buffers in-
volved: color and mask. Inspired by the double-
buffering technique used by most graphics
APIs, two copies of each are kept. This ensures
that for any given drawing operation, one im-
age representing the current state is read from
and the other is written to, which represents
the new state of the data. The display code
only references the current color buffer. With
appropriate use of memory barriers, and due
to the single-threaded nature of OpenGL, there
is no ambiguity as to which buffer is which.

The drawing functions handle a number of
different primitives, more than is appropriate
to list here. They fall into two classes: those
which use a boolean is_inside() function to
determine if a given voxel’s location is inside
the shape and those which use a separate load
buffer to get data from the CPU. Both of these
treat the mask the same way. As a 1-bit value,
it determines whether or not that voxel can
be written to – if a cell is masked, it will re-
tain its contents, even if it would be affected
by the modeling functions. The shader associ-
ated with each drawing operation has indepen-
dent toggles for drawing and masking. Also
included are several functions to manipulate
this mask, such as inverting, clearing, or mask-
ing ranges in the color channels5.

The functions which use the is_inside()

function could easily be extended to handle
arbitrary signed distance fields. The best way
to handle this interface has not yet been iden-
tified, but this would be a good place to in-
corporate in-engine scripting to define an ar-
bitrary is_inside() function. There are only
a few load buffer functions including loading
of voxel data from a PNG image on disk and

5E.g. mask all voxels with a value in the red channel
greater than 0.5.
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Brent Werness’ Voxel Automata Terrain (VAT)
[11]. VAT is an algorithm converted from the
original Processing implementation to C++. It
generates highly varied voxel forms based on
a sort of 3D analog to the Diamond-Square al-
gorithm. This has been very useful in testing
the implementation of the lighting functions.
In both of these cases, the data is acquired and
buffered to the GPU, before a compute shader
is invoked to copy the data with a toggle to
either respect or ignore the state of the mask.

The combination of drawing and masking
functions has proved to be a very powerful way
to produce complex voxel models. By keeping
this 3D raster data on the GPU and manipu-
lating its contents with these various compute
shaders, many operations can be applied over
one another in interesting and creative ways.

iv. Lighting

The lighting concepts are where we begin to
see more benefit from the 3D raster. By using
this representation, it becomes easier to talk
about what is happening along a ray which
traverses the volume. At any point along the
ray’s length the volume data can be queried to
determine the opacity of the space.

There are a number of lighting functions that
are defined: point and directional lighting, am-
bient occlusion, and an approximation of global
illumination.

Point lights are computed using a shader
invocation for each voxel. The inputs to this
shader are light position, initial light intensity,
decay power, and distance power. The relative
position of the light with respect to the voxel
is used to determine the vector along which
the light will travel, with the light position also
serving as the origin point for that ray. There
is code to handle the cases in which the light is
inside the voxel under consideration or if the
light position falls outside the volume.

Similar to how the display function operates,
there is a process of sampling along the ray
in discrete steps. In this case, it is done for-
wards, rather than backwards, and tracks the
ray intensity as it is attenuated from a user de-
fined initial value. The value of decay power

determines how much the intensity of the ray
is attenuated by the alpha value at sampled
points. This also can be expressed as a recur-
rence relation:

Intensityn+1 = Intensityn · (1− alphadecaypower)

This is iterated until the ray reaches the loca-
tion of the current voxel. The value of distance
power is then used to compute a scale factor
that approximates the inverse square law, at the
default value of 2.0. It can be set to zero to have
the scale factor go to one, or raised to a higher
power to decay more in a shorter distance. The
final result of the computation is then added to
the existing value in the voxel in the lighting
buffer associated with the shader invocation.

Directional lights are computed in a very
similar fashion, but have no divergence. They
use a uniform vector for all shader invocations,
as if the light was at infinite distance. The
inputs are a pair of euler angles and decay
power. The euler angles are used to express the
direction of the light vector. The shader does
a ray-box intersection to determine near and
far intersection points, and an almost identical
process is followed from the near intersection
point to the voxel’s location. Distance is not
considered in this computation.

Ambient occlusion is based on a variable ra-
dius neighborhood and is invoked per voxel the
same as the previous two. There is logic which
does a weighted sum of the neighbohring cells’
alpha values according to something like a
gaussian kernel, and considers a ratio of this
versus the maximum possible value. The value
in the lighting buffer is written as the existing
value times one minus this ratio.

The structure for global illumination is a lit-
tle different. The original implementation [11]
was done serially on the CPU, and made some
assumptions based on this sequential evalua-
tion. This required a 2D invocation structure,
which would go in slices down the y axis. For
each voxel in the current slice, vectors to the
nine voxels above it are considered6. The in-
puts are an alpha threshold and a sky intensity.

6These are the voxels which share an edge or corner
with the top face of the current voxel.
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The vectors make discrete steps through the
volume, until one of two things happens. If
they hit a voxel whose alpha channel is above
the threshold, their contribution is established
by some portion of the lighting value at that
point. If they escape the volume before encoun-
tering an opaque enough voxel, their contri-
bution is established by the sky intensity. The
contributions of the nine rays are averaged, and
the value is added to the existing value in the
lighting buffer for this voxel.

The last lighting feature to consider is called
’mash’. In the same way that the display shader
will apply the lighting value as a scale factor
to the color data, this same operation is de-
strucively applied to the RGB data stored in
the current color buffer. The lighting buffer
can then be reset to neutral values, so the ap-
pearance of the voxel data is maintained. The
primary idea for this feature was to be able to
save voxel data with the lighting applied; how-
ever, interesting creative applications for this
exist as well.

v. Other Manipulation Functions

Most of these features have come from using
the editor. Among them are gaussian and box
blurs, shifting, loading and saving, clearing
and loading operations that will respect the
mask, and a few functions to manipulate the
mask buffer. The blurs are applied with vari-
able radii and with the option to respect the
mask as well. They diffuse color and alpha
values into neighboring cells, which can create
interesting effects around masked, opaque vox-
els. Shifting takes integer arguments for each
axis, and moves each voxel to a new location,
with the option to loop off the edges.

Loading and saving are used to get data to
and from the GPU. The file format is a sim-
ple PNG image, which contains all the slices
of the volume data enumerated out one after
another, in a very tall image. Using a lossless
compressed format allows for small files that
still contain all the data7. Using some loader

7For a voxel block 256 on an edge, this is a 256 by 65535
image. By comparison, a BMP image with an alpha channel

code for PNG images [2], the format requires
almost no processing before being passed di-
rectly to OpenGL as 3D texture data.

vi. Interface Elements

There are several other improvements to the
interface which made the editor much easier to
use. A convenient GUI has been implemented
using dearImGUI [3], which presents all the
functions to the user with a tabbed layout to
switch between them. It provides input wid-
gets to set parameters and buttons that can be
used to call functions. Another of these fea-
tures is to deal with the fact that it is easy to
become disoriented when rotating the block,
with respect to where each axis is pointing. To
counter this, a small orientation widget ren-
dered with OpenGL geometry has been put
together that sits down in the corner of the
screen and tracks where the X, Y, and Z basis
vectors are pointing8. This is useful so that you
can achieve predictable placement of geometry
and lights.

III. Conclusions and Future

Directions

One of the largest benefits that comes from this
voxel representation of space is a constant-time
reference to a global representation of all the
geometry. This makes it easier to talk about
some parts of how light behaves, but lacks the
normal data that would be required in order to
determine accurately how it would bounce or
refract. Another buffer could be added to keep
the normal data when you draw new shapes,
but that may not correlate well with functions
like blurring operations.

The current system has a limitation in that
it uses a single channel representation of light
intensity. One direction for future develoments
is to convert to an RGB representation, to allow
for arbitrarily colored lights. Also related to

would be more than 50 megabytes where these are rarely
more than a few.

8See the appendix to for an example.
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lighting, cone lights would be specified simi-
larly to point lights, but with direction and a
solid angle, perhaps something to express how
it falls off towards the edges of this angle. With
a current desktop GPU, the lighting functions
are fast enough to support realtime animation.
By caching an ambient level in one of the light-
ing buffers and applying point or directional
lights with varying parameters each frame, this
could open up more creative possibilities.

There are a few other features for which a
usable interface has yet to be determined. The
first is a scriptable interface for the use of things
like signed distance fields, which would allow
for fractals and other complex shapes to be
defined by the user. Another is a copy/paste
operation which would take volume data from
one location and apply it elsewhere. By using
3D texture samplers, this could be extended
to allow for rotation, scaling, mirrored repeats
and more.
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IV. Appendix: Images

Showing the editor interface, with the orientation widget in the lower right corner.

Showing some example data made with the editor and lighting functions.

Tile based renderer showing a model at 5760x1080, 8x MSAA, with 512 voxel resolution at 60fps.
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